If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2=149
We move all terms to the left:
g^2-(149)=0
a = 1; b = 0; c = -149;
Δ = b2-4ac
Δ = 02-4·1·(-149)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{149}}{2*1}=\frac{0-2\sqrt{149}}{2} =-\frac{2\sqrt{149}}{2} =-\sqrt{149} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{149}}{2*1}=\frac{0+2\sqrt{149}}{2} =\frac{2\sqrt{149}}{2} =\sqrt{149} $
| 4y-15=19 | | 16z-6z=20 | | -2g+2=10 | | -8r=-7-9r | | 6z-3z-z+-2z=11 | | 31/2x=1.12 | | 2.0=15t-4.905t2 | | 3x-(x-4)=12 | | 7b+b-7b+3b-b=18 | | 4u-11=33 | | 5k-4k=17 | | a/4+1=12 | | -1=-5/3(6)+b | | 32+28(15)=x | | 13=8+5w | | 5(x−6)=7x+3 | | 3u-2u=19 | | (81x+3)(x-7)=9x(9x-6) | | 12j-9j=18 | | 11u-10u=20 | | (x-7)/4=(x-2)/5 | | 11u–10u=20 | | 2(x-$8.00)=$4.00 | | 2^3=w+1^4 | | 12d-11d=15 | | (3/2)x=4/9 | | 4=3/1(1)+b | | 16x+7=18x-5 | | 2(3x+4)=8x-20 | | -1/5(x-4=-2 | | 43=8c−5= | | 11b-7b=16 |